Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Genome Biol ; 24(1): 47, 2023 03 13.
Article in English | MEDLINE | ID: covidwho-2260859

ABSTRACT

BACKGROUND: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS: Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS: These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , Genetic Background , Genome, Viral , Mutation
2.
BMC Med ; 21(1): 25, 2023 01 19.
Article in English | MEDLINE | ID: covidwho-2196270

ABSTRACT

BACKGROUND: Predicting the likely size of future SARS-CoV-2 waves is necessary for public health planning. In England, voluntary "plan B" mitigation measures were introduced in December 2021 including increased home working and face coverings in shops but stopped short of restrictions on social contacts. The impact of voluntary risk mitigation behaviours on future SARS-CoV-2 burden is unknown. METHODS: We developed a rapid online survey of risk mitigation behaviours ahead of the winter 2021 festive period and deployed in two longitudinal cohort studies in the UK (Avon Longitudinal Study of Parents and Children (ALSPAC) and TwinsUK/COVID Symptom Study (CSS) Biobank) in December 2021. Using an individual-based, probabilistic model of COVID-19 transmission between social contacts with SARS-CoV-2 Omicron variant parameters and realistic vaccine coverage in England, we predicted the potential impact of the SARS-CoV-2 Omicron wave in England in terms of the effective reproduction number and cumulative infections, hospital admissions and deaths. Using survey results, we estimated in real-time the impact of voluntary risk mitigation behaviours on the Omicron wave in England, if implemented for the entire epidemic wave. RESULTS: Over 95% of survey respondents (NALSPAC = 2686 and NTwins = 6155) reported some risk mitigation behaviours, with vaccination and using home testing kits reported most frequently. Less than half of those respondents reported that their behaviour was due to "plan B". We estimate that without risk mitigation behaviours, the Omicron variant is consistent with an effective reproduction number between 2.5 and 3.5. Due to the reduced vaccine effectiveness against infection with the Omicron variant, our modelled estimates suggest that between 55% and 60% of the English population could be infected during the current wave, translating into between 12,000 and 46,000 cumulative deaths, depending on assumptions about severity and vaccine effectiveness. The actual number of deaths was 15,208 (26 November 2021-1 March 2022). We estimate that voluntary risk reduction measures could reduce the effective reproduction number to between 1.8 and 2.2 and reduce the cumulative number of deaths by up to 24%. CONCLUSIONS: Predicting future infection burden is affected by uncertainty in disease severity and vaccine effectiveness estimates. In addition to biological uncertainty, we show that voluntary measures substantially reduce the projected impact of the SARS-CoV-2 Omicron variant but that voluntary measures alone would be unlikely to completely control transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , United States , Child , Humans , Longitudinal Studies , COVID-19/epidemiology , COVID-19/prevention & control , England/epidemiology
3.
Sci Signal ; 15(757): eabm0808, 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2088392

ABSTRACT

Multiple coronaviruses have emerged independently in the past 20 years that cause lethal human diseases. Although vaccine development targeting these viruses has been accelerated substantially, there remain patients requiring treatment who cannot be vaccinated or who experience breakthrough infections. Understanding the common host factors necessary for the life cycles of coronaviruses may reveal conserved therapeutic targets. Here, we used the known substrate specificities of mammalian protein kinases to deconvolute the sequence of phosphorylation events mediated by three host protein kinase families (SRPK, GSK-3, and CK1) that coordinately phosphorylate a cluster of serine and threonine residues in the viral N protein, which is required for viral replication. We also showed that loss or inhibition of SRPK1/2, which we propose initiates the N protein phosphorylation cascade, compromised the viral replication cycle. Because these phosphorylation sites are highly conserved across coronaviruses, inhibitors of these protein kinases not only may have therapeutic potential against COVID-19 but also may be broadly useful against coronavirus-mediated diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Phosphorylation , Glycogen Synthase Kinase 3/metabolism , Virus Replication , Nucleocapsid Proteins/metabolism , Nucleocapsid/metabolism , Serine/metabolism , Threonine/metabolism , Mammals/metabolism , Protein Serine-Threonine Kinases
4.
5.
Gigascience ; 112022 05 26.
Article in English | MEDLINE | ID: covidwho-1873911

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a complex strategy for the transcription of viral subgenomic mRNAs (sgmRNAs), which are targets for nucleic acid diagnostics. Each of these sgmRNAs has a unique 5' sequence, the leader-transcriptional regulatory sequence gene junction (leader-TRS junction), that can be identified using sequencing. High-resolution sequencing has been used to investigate the biology of SARS-CoV-2 and the host response in cell culture and animal models and from clinical samples. LeTRS, a bioinformatics tool, was developed to identify leader-TRS junctions and can be used as a proxy to quantify sgmRNAs for understanding virus biology. LeTRS is readily adaptable for other coronaviruses such as Middle East respiratory syndrome coronavirus or a future newly discovered coronavirus. LeTRS was tested on published data sets and novel clinical samples from patients and longitudinal samples from animal models with coronavirus disease 2019. LeTRS identified known leader-TRS junctions and identified putative novel sgmRNAs that were common across different mammalian species. This may be indicative of an evolutionary mechanism where plasticity in transcription generates novel open reading frames, which can then subject to selection pressure. The data indicated multiphasic abundance of sgmRNAs in two different animal models. This recapitulates the relative sgmRNA abundance observed in cells at early points in infection but not at late points. This pattern is reflected in some human nasopharyngeal samples and therefore has implications for transmission models and nucleic acid-based diagnostics. LeTRS provides a quantitative measure of sgmRNA abundance from sequencing data. This can be used to assess the biology of SARS-CoV-2 (or other coronaviruses) in clinical and nonclinical samples, especially to evaluate different variants and medical countermeasures that may influence viral RNA synthesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cell Culture Techniques , Computational Biology , Humans , Mammals/genetics , Models, Animal , RNA, Messenger/genetics , SARS-CoV-2/genetics
6.
Nucleic Acids Res ; 50(6): 3475-3489, 2022 04 08.
Article in English | MEDLINE | ID: covidwho-1730702

ABSTRACT

The SARS-CoV-2 virus has a complex transcriptome characterised by multiple, nested subgenomic RNAsused to express structural and accessory proteins. Long-read sequencing technologies such as nanopore direct RNA sequencing can recover full-length transcripts, greatly simplifying the assembly of structurally complex RNAs. However, these techniques do not detect the 5' cap, thus preventing reliable identification and quantification of full-length, coding transcript models. Here we used Nanopore ReCappable Sequencing (NRCeq), a new technique that can identify capped full-length RNAs, to assemble a complete annotation of SARS-CoV-2 sgRNAs and annotate the location of capping sites across the viral genome. We obtained robust estimates of sgRNA expression across cell lines and viral isolates and identified novel canonical and non-canonical sgRNAs, including one that uses a previously un-annotated leader-to-body junction site. The data generated in this work constitute a useful resource for the scientific community and provide important insights into the mechanisms that regulate the transcription of SARS-CoV-2 sgRNAs.


Subject(s)
COVID-19 , Nanopores , RNA, Guide, Kinetoplastida/chemistry , COVID-19/genetics , Genome, Viral/genetics , Humans , RNA Caps , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics
7.
Nat Commun ; 13(1): 222, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1621242

ABSTRACT

As the global burden of SARS-CoV-2 infections escalates, so does the evolution of viral variants with increased transmissibility and pathology. In addition to this entrenched diversity, RNA viruses can also display genetic diversity within single infected hosts with co-existing viral variants evolving differently in distinct cell types. The BriSΔ variant, originally identified as a viral subpopulation from SARS-CoV-2 isolate hCoV-19/England/02/2020, comprises in the spike an eight amino-acid deletion encompassing a furin recognition motif and S1/S2 cleavage site. We elucidate the structure, function and molecular dynamics of this spike providing mechanistic insight into how the deletion correlates to viral cell tropism, ACE2 receptor binding and infectivity of this SARS-CoV-2 variant. Our results reveal long-range allosteric communication between functional domains that differ in the wild-type and the deletion variant and support a view of SARS-CoV-2 probing multiple evolutionary trajectories in distinct cell types within the same infected host.


Subject(s)
SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Animals , COVID-19/virology , Cell Line , Cryoelectron Microscopy , Evolution, Molecular , Furin/metabolism , Humans , Linoleic Acid/metabolism , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism , Virus Internalization
8.
PLoS Pathog ; 17(11): e1009820, 2021 11.
Article in English | MEDLINE | ID: covidwho-1528735

ABSTRACT

Interferons play a critical role in regulating host immune responses to SARS-CoV-2, but the interferon (IFN)-stimulated gene (ISG) effectors that inhibit SARS-CoV-2 are not well characterized. The IFN-inducible short isoform of human nuclear receptor coactivator 7 (NCOA7) inhibits endocytic virus entry, interacts with the vacuolar ATPase, and promotes endo-lysosomal vesicle acidification and lysosomal protease activity. Here, we used ectopic expression and gene knockout to demonstrate that NCOA7 inhibits infection by SARS-CoV-2 as well as by lentivirus particles pseudotyped with SARS-CoV-2 Spike in lung epithelial cells. Infection with the highly pathogenic, SARS-CoV-1 and MERS-CoV, or seasonal, HCoV-229E and HCoV-NL63, coronavirus Spike-pseudotyped viruses was also inhibited by NCOA7. Importantly, either overexpression of TMPRSS2, which promotes plasma membrane fusion versus endosomal fusion of SARS-CoV-2, or removal of Spike's polybasic furin cleavage site rendered SARS-CoV-2 less sensitive to NCOA7 restriction. Collectively, our data indicate that furin cleavage sensitizes SARS-CoV-2 Spike to the antiviral consequences of endosomal acidification by NCOA7, and suggest that the acquisition of furin cleavage may have favoured the co-option of cell surface TMPRSS proteases as a strategy to evade the suppressive effects of IFN-induced endo-lysosomal dysregulation on virus infection.


Subject(s)
COVID-19/virology , Furin/metabolism , Nuclear Receptor Coactivators/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Cell Line , Endosomes/metabolism , Furin/genetics , Gene Expression , Humans , Immune Evasion , Interferons/metabolism , Lysosomes/enzymology , Nuclear Receptor Coactivators/genetics , Protein Isoforms , Proteolysis , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Pseudotyping , Virus Internalization
9.
mSphere ; 6(4): e0021921, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1319381

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic infection that emerged in the Middle East in 2012. Symptoms range from mild to severe and include both respiratory and gastrointestinal illnesses. The virus is mainly present in camel populations with occasional zoonotic spill over into humans. The severity of infection in humans is influenced by numerous factors, and similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underlying health complications can play a major role. Currently, MERS-CoV and SARS-CoV-2 are coincident in the Middle East and thus a rapid way of sequencing MERS-CoV to derive genotype information for molecular epidemiology is needed. Additionally, complicating factors in MERS-CoV infections are coinfections that require clinical management. The ability to rapidly characterize these infections would be advantageous. To rapidly sequence MERS-CoV, an amplicon-based approach was developed and coupled to Oxford Nanopore long read length sequencing. This and a metagenomic approach were evaluated with clinical samples from patients with MERS. The data illustrated that whole-genome or near-whole-genome information on MERS-CoV could be rapidly obtained. This approach provided data on both consensus genomes and the presence of minor variants, including deletion mutants. The metagenomic analysis provided information of the background microbiome. The advantage of this approach is that insertions and deletions can be identified, which are the major drivers of genotype change in coronaviruses. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in late 2012 in Saudi Arabia. The virus is a serious threat to people not only in the Middle East but also in the world and has been detected in over 27 countries. MERS-CoV is spreading in the Middle East and neighboring countries, and approximately 35% of reported patients with this virus have died. This is the most severe coronavirus infection so far described. Saudi Arabia is a destination for many millions of people in the world who visit for religious purposes (Umrah and Hajj), and so it is a very vulnerable area, which imposes unique challenges for effective control of this epidemic. The significance of our study is that clinical samples from patients with MERS were used for rapid in-depth sequencing and metagenomic analysis using long read length sequencing.


Subject(s)
Coronavirus Infections/virology , Microbiota/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Aged , Animals , COVID-19/virology , Female , Humans , Male , Middle Aged , SARS-CoV-2/genetics
10.
Journal of Modern Craft ; 2021.
Article in English | Scopus | ID: covidwho-1214364

ABSTRACT

Since April 2020, the U.S. Center for Disease Control (CDC) has asked for people to wear face masks in public to curb the spread of COVID-19. This shift has given rise to a mass movement of cloth mask making. Artists have leapt into action to produce masks for healthcare and frontline workers or as an alternative economy for lost income, while others customize masks to communicate identity, beliefs, or concerns. Mask making has also raised questions about the future of fashion with regards to health and sustainability. Through a series of conversations, experts from the arts, fashion, sustainability, and medical fields were invited to talk about the variety of issues, and questions this moment of mask making and wearing have produced. Accessories, like masks, are just one example of how fashion has been used over time to prevent the spread of disease. Alison Matthews David’s research into the intersections of fashion, medical history, criminology, and occupational health provides a comprehensive context to understand where today’s moment of mask wearing fits into the history of protective dress. © 2021 Informa UK Limited, trading as Taylor & Francis Group.

11.
Nat Microbiol ; 6(7): 899-909, 2021 07.
Article in English | MEDLINE | ID: covidwho-1205445

ABSTRACT

SARS-CoV-2 entry requires sequential cleavage of the spike glycoprotein at the S1/S2 and the S2' cleavage sites to mediate membrane fusion. SARS-CoV-2 has a polybasic insertion (PRRAR) at the S1/S2 cleavage site that can be cleaved by furin. Using lentiviral pseudotypes and a cell-culture-adapted SARS-CoV-2 virus with an S1/S2 deletion, we show that the polybasic insertion endows SARS-CoV-2 with a selective advantage in lung cells and primary human airway epithelial cells, but impairs replication in Vero E6, a cell line used for passaging SARS-CoV-2. Using engineered spike variants and live virus competition assays and by measuring growth kinetics, we find that the selective advantage in lung and primary human airway epithelial cells depends on the expression of the cell surface protease TMPRSS2, which enables endosome-independent virus entry by a route that avoids antiviral IFITM proteins. SARS-CoV-2 virus lacking the S1/S2 furin cleavage site was shed to lower titres from infected ferrets and was not transmitted to cohoused sentinel animals, unlike wild-type virus. Analysis of 100,000 SARS-CoV-2 sequences derived from patients and 24 human postmortem tissues showed low frequencies of naturally occurring mutants that harbour deletions at the polybasic site. Taken together, our findings reveal that the furin cleavage site is an important determinant of SARS-CoV-2 transmission.


Subject(s)
COVID-19/transmission , Furin/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/virology , Cathepsins/metabolism , Chlorocebus aethiops , Endosomes/metabolism , Epithelial Cells , Ferrets , Humans , Immune Evasion , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Respiratory System/cytology , Respiratory System/virology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Viral Genome Packaging , Virus Internalization , Virus Replication , Virus Shedding
12.
Genome Med ; 13(1): 43, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-1136245

ABSTRACT

BACKGROUND: ChAdOx1 nCoV-19 is a recombinant adenovirus vaccine against SARS-CoV-2 that has passed phase III clinical trials and is now in use across the globe. Although replication-defective in normal cells, 28 kbp of adenovirus genes is delivered to the cell nucleus alongside the SARS-CoV-2 S glycoprotein gene. METHODS: We used direct RNA sequencing to analyse transcript expression from the ChAdOx1 nCoV-19 genome in human MRC-5 and A549 cell lines that are non-permissive for vector replication alongside the replication permissive cell line, HEK293. In addition, we used quantitative proteomics to study over time the proteome and phosphoproteome of A549 and MRC5 cells infected with the ChAdOx1 nCoV-19 vaccine. RESULTS: The expected SARS-CoV-2 S coding transcript dominated in all cell lines. We also detected rare S transcripts with aberrant splice patterns or polyadenylation site usage. Adenovirus vector transcripts were almost absent in MRC-5 cells, but in A549 cells, there was a broader repertoire of adenoviral gene expression at very low levels. Proteomically, in addition to S glycoprotein, we detected multiple adenovirus proteins in A549 cells compared to just one in MRC5 cells. CONCLUSIONS: Overall, the ChAdOx1 nCoV-19 vaccine's transcriptomic and proteomic repertoire in cell culture is as expected. The combined transcriptomic and proteomics approaches provide a detailed insight into the behaviour of this important class of vaccine using state-of-the-art techniques and illustrate the potential of this technique to inform future viral vaccine vector design.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/genetics , Cell Line , Cells, Cultured , Gene Expression , Gene Expression Profiling , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Polyadenylation , Proteomics/methods , RNA, Messenger , RNA, Viral , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Transcription, Genetic
13.
Viruses ; 12(10)2020 10 14.
Article in English | MEDLINE | ID: covidwho-905965

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Sequencing the viral genome as the outbreak progresses is important, particularly in the identification of emerging isolates with different pathogenic potential and to identify whether nucleotide changes in the genome will impair clinical diagnostic tools such as real-time PCR assays. Although single nucleotide polymorphisms and point mutations occur during the replication of coronaviruses, one of the biggest drivers in genetic change is recombination. This can manifest itself in insertions and/or deletions in the viral genome. Therefore, sequencing strategies that underpin molecular epidemiology and inform virus biology in patients should take these factors into account. A long amplicon/read length-based RT-PCR sequencing approach focused on the Oxford Nanopore MinION/GridION platforms was developed to identify and sequence the SARS-CoV-2 genome in samples from patients with or suspected of COVID-19. The protocol, termed Rapid Sequencing Long Amplicons (RSLAs) used random primers to generate cDNA from RNA purified from a sample from a patient, followed by single or multiplex PCRs to generate longer amplicons of the viral genome. The base protocol was used to identify SARS-CoV-2 in a variety of clinical samples and proved sensitive in identifying viral RNA in samples from patients that had been declared negative using other nucleic acid-based assays (false negative). Sequencing the amplicons revealed that a number of patients had a proportion of viral genomes with deletions.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Pneumonia, Viral/virology , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , DNA, Complementary/analysis , DNA, Complementary/genetics , DNA, Viral/analysis , DNA, Viral/genetics , Genome, Viral , High-Throughput Nucleotide Sequencing/methods , Humans , Molecular Epidemiology , Multiplex Polymerase Chain Reaction , Pandemics , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Sequence Analysis
14.
Science ; 370(6518): 861-865, 2020 11 13.
Article in English | MEDLINE | ID: covidwho-883300

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), uses the viral spike (S) protein for host cell attachment and entry. The host protease furin cleaves the full-length precursor S glycoprotein into two associated polypeptides: S1 and S2. Cleavage of S generates a polybasic Arg-Arg-Ala-Arg carboxyl-terminal sequence on S1, which conforms to a C-end rule (CendR) motif that binds to cell surface neuropilin-1 (NRP1) and NRP2 receptors. We used x-ray crystallography and biochemical approaches to show that the S1 CendR motif directly bound NRP1. Blocking this interaction by RNA interference or selective inhibitors reduced SARS-CoV-2 entry and infectivity in cell culture. NRP1 thus serves as a host factor for SARS-CoV-2 infection and may potentially provide a therapeutic target for COVID-19.


Subject(s)
Betacoronavirus/physiology , Neuropilin-1/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Amino Acid Motifs , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , COVID-19 , Caco-2 Cells , Coronavirus Infections/virology , Crystallography, X-Ray , Furin/metabolism , HeLa Cells , Humans , Mutagenesis, Site-Directed , Neuropilin-1/antagonists & inhibitors , Neuropilin-1/chemistry , Neuropilin-1/genetics , Pandemics , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Protein Binding , Protein Interaction Domains and Motifs , RNA Interference , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
15.
Genome Med ; 12(1): 68, 2020 07 28.
Article in English | MEDLINE | ID: covidwho-680048

ABSTRACT

BACKGROUND: SARS-CoV-2 is a recently emerged respiratory pathogen that has significantly impacted global human health. We wanted to rapidly characterise the transcriptomic, proteomic and phosphoproteomic landscape of this novel coronavirus to provide a fundamental description of the virus's genomic and proteomic potential. METHODS: We used direct RNA sequencing to determine the transcriptome of SARS-CoV-2 grown in Vero E6 cells which is widely used to propagate the novel coronavirus. The viral transcriptome was analysed using a recently developed ORF-centric pipeline. Allied to this, we used tandem mass spectrometry to investigate the proteome and phosphoproteome of the same virally infected cells. RESULTS: Our integrated analysis revealed that the viral transcripts (i.e. subgenomic mRNAs) generally fitted the expected transcription model for coronaviruses. Importantly, a 24 nt in-frame deletion was detected in over half of the subgenomic mRNAs encoding the spike (S) glycoprotein and was predicted to remove a proposed furin cleavage site from the S glycoprotein. Tandem mass spectrometry identified over 500 viral peptides and 44 phosphopeptides in virus-infected cells, covering almost all proteins predicted to be encoded by the SARS-CoV-2 genome, including peptides unique to the deleted variant of the S glycoprotein. CONCLUSIONS: Detection of an apparently viable deletion in the furin cleavage site of the S glycoprotein, a leading vaccine target, shows that this and other regions of SARS-CoV-2 proteins may readily mutate. The furin site directs cleavage of the S glycoprotein into functional subunits during virus entry or exit and likely contributes strongly to the pathogenesis and zoonosis of this virus. Our data emphasises that the viral genome sequence should be carefully monitored during the growth of viral stocks for research, animal challenge models and, potentially, in clinical samples. Such variations may result in different levels of virulence, morbidity and mortality.


Subject(s)
Betacoronavirus/growth & development , Gene Expression Profiling/methods , Proteomics/methods , Sequence Deletion , Spike Glycoprotein, Coronavirus/genetics , Animals , Betacoronavirus/genetics , Betacoronavirus/metabolism , Chlorocebus aethiops , Phosphorylation , SARS-CoV-2 , Sequence Analysis, RNA , Serial Passage , Tandem Mass Spectrometry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL